Overexpression of Nrf2 Protects against Microcystin-Induced Hepatotoxicity in Mice
نویسندگان
چکیده
Oxidative stress and glutathione (GSH) depletion are implicated in mycocystin hepatotoxicity. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in microcystin-induced liver injury, Nrf2-null, wild-type, and Keap1-hepatocyte knockout (Keap1-HKO) mice were treated with microcystin (50 μg/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Microcystin increased serum alanine aminotransferase and aspartate aminotransferase activities, and caused extensive inflammation and necrosis in Nrf2-null and wild-type mice, but not in Keap1-HKO mice. Oxidative stress and inflammation are implicated in microcystin-induced hepatotoxicity, as evidenced by increased lipid peroxidation and increased expression of pro-inflammatory genes, such as neutrophil-specific chemokines mKC and MIP-2, and pro-inflammatory cytokines IL-1β and IL-6. The increased expression of these pro-inflammatory genes was attenuated in Keap1-HKO mice. Nrf2 and Nqo1 mRNA and protein were higher in Keap1-HKO mice at constitutive levels and after microcystin. To further investigate the mechanism of the protection, hepatic GSH and the mRNA of GSH-related enzymes were determined. Microcystin markedly depleted liver GSH by 60-70% in Nrf2 and WT mice but only 35% in Keap1-HKO mice. The mRNAs of GSH conjugation and peroxide reduction enzymes, such as Gstα1, Gstα4, Gstμ, and Gpx2 were higher in livers of Keap1-HKO mice, together with higher expression of the rate-limiting enzyme for GSH synthesis (Gclc). Organic anion transport polypeptides were increased by microcystin with the most increase in Keap1-HKO mice. In conclusion, this study demonstrates that higher basal levels of Nrf2 and GSH-related genes in Keap1-HKO mice prevented microcystin-induced oxidative stress and liver injury.
منابع مشابه
Activation of Nrf2 Protects against Triptolide-Induced Hepatotoxicity
Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF), has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2) in triptoli...
متن کاملNRF2 Protection against Liver Injury Produced by Various Hepatotoxicants
To investigate the role of Nrf2 as a master defense against the hepatotoxicity produced by various chemicals, Nrf2-null, wild-type, Keap1-knock down (Keap1-Kd) and Keap1-hepatocyte knockout (Keap1-HKO) mice were used as a "graded Nrf2 activation" model. Mice were treated with 14 hepatotoxicants at appropriate doses, and blood and liver samples were collected thereafter (6 h to 7 days depending ...
متن کاملProtective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...
متن کاملDimethyl itaconate protects against lipopolysaccharide-induced endometritis by inhibition of TLR4/NF-κB and activation of Nrf2/HO-1 signaling pathway in mice
Objective(s): Endometritis is the inflammation of the uterine lining that is associated with infertility. It affects milk production and reproductive performance and leads to huge economic losses in dairy cows. Dimethyl itaconate (DI), a promising chemical agent, has recently been proved to have multiple health-promoting effects. However, the effects of DI on endometri...
متن کاملSake lees hydrolysate protects against acetaminophen-induced hepatotoxicity via activation of the Nrf2 antioxidant pathway
Acetaminophen is a commonly used analgesic. However, an overdose of acetaminophen causes severe hepatotoxicity via depletion of hepatic glutathione. Here, we investigated the protective effects of sake lees hydrolysate against acetaminophen-induced hepatotoxicity in mice. Sake lees hydrolysate was administered orally to ICR mice for seven days. Six hours after acetaminophen treatment, the mice ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014